“Oh, my daughter isn’t very interested in coding. She’s not that type”. 

I have heard this so many times from parents that it makes me curious. When there is an opportunity, I pause and ask, “What do you mean?” Usually, they respond by saying something like, “Well, she is more the liberal arts type or life sciences type”.

I realized there’s a misconception that learning to code is only important for kids interested in STEM careers, but the world has quickly moved past that. Computer science has evolved way beyond the idea of a singular field. A foundational understanding of computer programming is useful to your child, regardless of the career path they end up taking, even liberal arts or life sciences. Stephen Wolfram, CEO of Wolfram Alpha, said it best,

“Pick any field X, from archeology to zoology. There either is now a ‘computational X’ or there soon will be. And it’s widely viewed as the future of the field.”

I want to show you how computational thinking is being applied in non-STEM fields today so you can understand how computer programming can help your child, even if she isn’t interested in STEM related careers. Coding will expand the possibilities of how kids work with their passions, helping them capitalize on emerging areas of any industry. 

If you have a high schooler who isn’t quite sure what to major in during college, this article can help expose them to many emerging fields in the hopes that at least one of them will be exciting enough to catch their imagination. 

Computer science brings pre-existing fields of study to the next level, helping experts broaden and deepen their work. Below are a few examples of emerging fields based upon combining established fields with computational processing. These are only a few examples. In reality, the possibility for new discoveries is limitless.

Computer science in emerging fields infographic

Computational Criminology

Criminology is the study of crime. While this might call to mind forensic science and medical analysis, computer science is helping professionals in the field fight crime.

So how does it work? 

According to the Technical Committee on Computational Forensics, computational forensics uses computational methods to model, simulate, analyze, and solve forensic problems. For example, professionals might use digital recreations of a crime scene based on available data to help judges picture a scenario more clearly, or even modeling how the characteristics of a city affect urban crime rates

Simulating these scenarios requires more than just a passion for forensics or the law. You need knowledge on how to craft computational models of real life crime, which ca